Categorization of free-text drug orders using character-level recurrent neural networks
نویسندگان
چکیده
منابع مشابه
Convolutional Neural Networks for Text Categorization: Shallow Word-level vs. Deep Character-level
This paper reports the performances of shallow word-level convolutional neural networks (CNN), our earlier work (2015) [3, 4], on the eight datasets with relatively large training data that were used for testing the very deep characterlevel CNN in Conneau et al. (2016) [1]. Our findings are as follows. The shallow word-level CNNs achieve better error rates than the error rates reported in [1] t...
متن کاملCharacter-level Recurrent Text Prediction
Text prediction is an application of language models to mobile devices. Currently, the state of the art models use neural networks. Unfortunately, mobile devices are constrainted in both computing power and space and are thus unable to run most (if not all) neural networks. Recently, however, character-level architectures have appeared that have outperformed previous architectures for machine t...
متن کاملText categorization using character shape codes
Text categorization in the form of topic identification is a capability of current interest. This paper is concerned with categorization of electronic document images. Previous work on the categorization of document images has relied on Optical Character Recognition (OCR) to provide the transformation between the image domain and a domain where pattern recognition techniques are more readily ap...
متن کاملText Categorization Using Neural Networks Initialized with Decision Trees
Text categorization – the assignment of natural language documents to one or more predefined categories based on their semantic content – is an important component in many information organization and management tasks. Performance of neural networks learning is known to be sensitive to the initial weights and architecture. This paper discusses the use multilayer neural network initialization wi...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Medical Informatics
سال: 2019
ISSN: 1386-5056
DOI: 10.1016/j.ijmedinf.2019.05.020